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Abstract

Differential-algebraic equations with embedded optimization criteria (DAEO)

are a class of mathematical models for underdetermined differential-algebraic

equation (DAE) systems with less algebraic equations than algebraic vari-

ables. The algebraic variables may be calculated as the solution of an embed-

ded (non)linear program, yielding a DAEO system. An example for DAEOs

is the dynamic flux balance analysis (DFBA) approach, where the formula-

tion of metabolic reaction networks leads to an underdetermined equation

system for the intracellular fluxes that are assumed to behave optimally with

respect to some cell-specific optimization criterion.

We present a toolbox that allows formulation of DAEOs in the object-

oriented Modelica modeling language. The solution method is based on sub-

stituting the embedded optimization problem with its first-order Karush-
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Kuhn-Tucker conditions to obtain a nonsmooth DAE system that can be

simulated by a root-finding DAE solver. One nonlinear example and two

examples based on DFBA demonstrate the performance of the toolbox.

Keywords: nonsmooth dynamic systems, Karush-Kuhn-Tucker conditions,

dynamic flux balance analysis, Modelica

1. Introduction

In chemical engineering, dynamic models are important for an improved

understanding of transient process behavior, in particular in response to dis-

turbances. They also help to design startup and shutdown procedures and

form the basis for model-based operation and control. In some cases, how-

ever, the system of differential-algebraic equations (DAE) may be underde-

termined due to for instance lack of mechanistic knowledge, i.e., there may

be more algebraic states than algebraic equations.

The simulation of such underdetermined DAEs is a non-trivial problem.

One may interpret these systems as differential inclusions where the right-

hand side of the differential equation is a set-valued function [41]. Under

some assumptions (e.g., linear differential and algebraic equations), it might

be possible to obtain a closed-form description of the set of trajectories.

However, the solution of general nonlinear underdetermined DAEs is much

more challenging. Methods based on Monte Carlo sampling or methods that

approximate the reachable set [45] have to be employed.

Nevertheless, from the modeling perspective it is often favorable to im-

pose one optimization condition which selects a unique or at least locally

unique solution from the space of possible solutions. This approach leads to
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a differential-algebraic equation system with optimization criteria embedded

(DAEO). This problem class is relevant to a variety of chemical engineering

applications.

For instance, in systems biology, a successful method to model the com-

plex reactions inside a living organism is based on steady-state balance equa-

tions coupled with the stoichiometry of intracellular reactions and additional

thermodynamic, kinetic or phenomenological constraints to narrow the pos-

sible metabolic flux distributions inside the cell. In most cases, the result-

ing (linear) equation system is underdetermined. The flux balance analysis

(FBA) method selects one possible flux distribution by imposing an opti-

mization criterion subject to these constraints [44, 28]. The dynamic flux

balance analysis (DFBA) method couples the FBA approach to the dynam-

ics of the reaction medium [23, 28]. DFBA became one of the dominating

methodologies used to describe the transient behavior of large biochemical

networks inside living cells, for example, to model the growth of Escherichia

coli (E. coli) on d-glucose and acetate [23] or to investigate growth and

ethanol productivity of a co-culture of E. coli and Saccharomyces cerevisiae

on d-glucose/d-xylose mixtures [15]. The DFBA approach leads to a DAEO

where the equality and inequality constraints of the embedded optimization

problem are linear. The objective function may be linear (e.g., maximization

of cell growth [44, 15]) or nonlinear (e.g., maximization of biomass yield per

flux unit [47]).

Dynamic models of separation processes often assume thermodynamic

equilibrium between coexisting phases (e.g., vapor-liquid equilibrium) that

is found at the (global) minimum of Gibbs free energy [2, 25, 26]. Here,
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the phase or chemical equilibrium assumption is made on purpose due to

much faster mass exchange dynamics compared to the overall dynamics of

the system. In contrast, the embedded optimization problem in the DFBA

approach is motivated by a lack of knowledge regarding the intracellular

flux distribution. Nevertheless, dynamic models based on phase equilibrium

may be formulated as DAEOs where both objective function and constraints

(e.g., material balance) are nonlinear. The applications range from modeling

of organic aerosol particles [21] to dynamic simulation of separation processes

based on different types of phase equilibria [13, 3, 37].

There are different approaches to solve DAEOs. The direct approach

(DA) is commonly used if an embedded LP is considered [15, 18]. It cal-

culates the algebraic variables by directly solving the optimization problem

in each time step of the integration. The direct approach is used in some

MATLAB implementations, for example, DyMMM [49] and as part of the

COBRA toolbox [38]. While this approach is computationally fast enough

for a certain class of DAEOs (in particular embedded LPs), it bears the risk

of wrong simulation results caused by the interaction of optimization and in-

tegration algorithm. For example, an attempted integration step may lead to

infeasibility of the embedded optimization problem [17]. A remedy is to use

first-order optimality conditions (KKT conditions) to reformulate the DAEO

into a nonsmooth DAE. This idea has been used to solve DAEO applications

with NLP embedded [21] and resulted in Fortran [19] and MATLAB [12]

implementations for solving models with LPs embedded.

We note that for efficient simulation of DAEOs taylored solution meth-

ods are required. These solution methods should exploit the fact that during
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numerical integration of the models, a sequence of related linear, quadratic

or nonlinear programs has to be solved. Actually, we have parametric op-

timization problems, with the time as varying parameter. A comprehensive

overview about the properties of parametric nonlinear programs is given in

[14]. If the embedded optimization problem is linear or quadratic, efficient

solution methods could borrow ideas from discrete time linear model pre-

dictive control, e.g., from multi-parametric programming [8] or online active

set strategies for QP solvers [9]. The latter will find a resemblance in our

subsequently presented active-set strategy for solving DAEOs with linear or

quadratic programs embedded. However, it is important to stress the dif-

ference between DAEOs and model-predictive control. In the former, an

embedded optimization problem has to be solved, in the latter we have an

outer optimization problem. The similarity arises because both are in fact

parametric optimization problems.

In comparison to existing literature, this work does not focus on a par-

ticular application but aims to treat general DAEOs. Thereby, we build on

the solution technique proposed by Landry et al. [21] using the first-order

KKT conditions to reformulate general DAEOs into nonsmooth DAEs and

provide implementations of the direct approach and the KKT embedding ap-

proach. We build on Modelica as an object-oriented modeling language that

provides a structured and efficient approach to model systems with differen-

tial, algebraic and discrete equations. For solving the embedded optimiza-

tion problem, we implemented an external toolbox that is interfaced to the

Modelica-based simulation environment. Our point of view is that Modelica

is better suited to model complex systems than MATLAB or Fortran. The
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aim of Modelica is to unify and generalize previous object-oriented modeling

languages and become a de facto standard [11]. Cellier and Kofman com-

pare Modelica and MATLAB for the simulation of an electrical circuit and

conclude that in MATLAB much more manual preprocessing is required [7].

From our personal experience, setting up a simulation with Fortran libraries

is even more tedious.

By providing a DAEO toolbox for Modelica, we get an easy-to-use inter-

face for model extension and embedding of DAEO formulations into large

and complex models (e.g., DFBA-based bioreactor coupled with plant-wide

biorefinery model [31]).

The structure of this work is as follows. In the next section, we for-

mally introduce the DAEO formulation, describe the applied solution meth-

ods and discuss the specialized solution method for DFBA models and the

implementation within the Modelica language. Subsequently, we demon-

strate the applicability of our method on one nonlinear example and two

linearly constrained examples based on DFBA. Finally, we close with con-

cluding remarks. The DAEO software will be made available on the pub-

lic git repository with the permalink http://permalink.avt.rwth-aachen.

de/?id=252659.

6



2. Methods

2.1. DAEO formulation

In DAEOs, the algebraic variables are determined by an embedded non-

linear program (NLP), i.e.,

9ydptq “fpydptq,yaptq, t,pq, with ydp0q “ yd,0ppq (1a)

yaptq P arg min
ŷaPRna

hpydptq, ŷa, t,pq (1b)

s.t. 0 “ gkpydptq, ŷa, t,pq, k “ 1, . . . , ne (1c)

0 ď gkpydptq, ŷa, t,pq, k “ ne`1, . . . , ng (1d)

Here, ydptq P R
nd and yaptq P R

na are the differential and algebraic variables,

respectively. The differential equations are given by sufficiently smooth func-

tions f : Rnd ˆ R
na ˆ r0, tf s ˆ R

np Ñ R
nd . The vector p P R

np comprises all

model parameters, tf is the final time and t P r0, tf s is the independent time

variable. The algebraic variables are given as the solution point of an embed-

ded NLP comprising Eqs. (1b)–(1d). The task is to find algebraic variables

ya that satisfy the constraints and further minimize an objective function

h : Rnd ˆ R
na ˆ r0, tf s ˆ R

np Ñ R.

Let us consider a simple DAEO example with one differential variable

yd, one algebraic variable ya and the time-invariant parameter vector pT “

pp1, p2, p3q
T “ p1, 3, 1qT . The dynamics on the time horizon r0, 1s are given
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by the following model

9ydptq “8π cosp2π ¨ tq, ydp0q “ 4, (2a)

yaptq P min
ŷaPR

hpt, ydptq, ŷa,pq “ p´ydptq ` 2 ŷa ` p3q
2 (2b)

s.t. 0 ď g1pt, ydptq, ŷa,pq “ ŷa, (2c)

0 ď g2pt, ydptq, ŷa,pq “ p2 ´ ŷa. (2d)

In the following, we discuss solution approaches to solve DAEO (1) using

Example (2) for illustration.

2.2. Direct approach

In the direct approach, an NLP solver directly solves the embedded opti-

mization problem every time the integration algorithm needs to evaluate the

algebraic part of the DAEO (1). The advantage of this approach is the sim-

ple implementation. For this reason, it is often applied, in particular, when

considering an embedded LP [18, 49, 15]. In that case, the successive solu-

tion of slightly changing embedded optimization problems is usually obtained

within a small number of iterations and the computation is often fast enough

for dynamic simulation. However, the approach bears some limitations that

may lead to wrong simulation results [17]. The failure is induced by the

interaction of integrator and optimizer. For instance, an attempted Euler

step of the integrator may lead to infeasibility of the embedded optimization

problem [17]. An additional drawback is the lack of derivative information

that the integrator needs for calculation of the Jacobian. Using the direct

approach, this information needs to be obtained using numerical approxima-
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tion methods that introduce a truncation error leading to another potential

cause of error for the integration of DAEOs. Alternatively, post-optimal

sensitivity analysis (see, e.g., [10]) may be applied to obtain derivative infor-

mation. Given the numerous drawbacks of the direct solution method, its

derivative calculation is not further investigated in this work. Instead, we

present an approach that allows calculation of truncation-free derivatives by

reformulating the DAEO into a nonsmooth DAE.

2.3. Reformulation by KKT embedding

The essential idea to solve this problem class is to substitute NLP (1b)–

(1d) in DAEO (1) by its associated KKT conditions, an approach also fol-

lowed by Landry et al. [21]. To set up the KKT necessary conditions of

optimality, they introduce time-dependent Lagrange multipliers λptq P R
ng ,

associated with the constraints g. Let

Iapyd,ya, t,pq :“ t1 ď k ď ng | gkpyd,ya, t,pq “ 0u Ă t1, 2, . . . , ngu (3)

denote the set of active constraints (shortly active set). Note that the equality

constraints (1c) are always active. The Lagrangian function is defined as

Lpyd,ya,λ, t,pq “ hpyd,ya, t,pq ´

ng
ÿ

k“1

λk ¨ gkpyd,ya, t,pq, (4a)

to formulate the KKT stationarity condition (see, e.g., [27])

0 “ ∇ya
L “ ∇ya

h ´

ng
ÿ

k“1

λk ¨ ∇ya
gk. (4b)

9



The algebraic variables yaptq and the non-zero-valued multipliers λkptq with

k P Iapydptq,yaptq, t,pq are determined by the first-order conditions in Eq. (4b)

together with the active constraints gkp. . . q “ 0, k P Iap. . . q. Landry et al. [21]

transform the DAEO (1) to the following parametric nonsmooth DAE:

9ydptq “ fpydptq,yaptq, t,pq, t P r0, tf s (5a)

0 “ gkpydptq,yaptq, t,pq, t P r0, tf s, k P Iapydptq,yaptq, t,pq (5b)

0 “ λkptq, t P r0, tf s, k R Iapydptq,yaptq, t,pq (5c)

0 “ ∇ya
Lpydptq,yaptq,λptq, t,pq, t P r0, tf s (5d)

ydp0q “ yd,0ppq. (5e)

The KKT-based transformation method yields an equation system that gives

a stationary point of the original embedded optimization problem. For

ease of notation, we introduce the algebraic variables z :“ pyT
a ,λ

T qT with

z P R
na`ng . There are two main issues that need to be discussed: First,

a conclusion about global optimality can only be made for convex NLPs

(5b) - (5d). However, in general, one has to provide measures to either check

whether one tracks the global minimum or the local minimum. An example

where the latter is desirable is the concept of metastability in thermodynam-

ics describing an energy state of an isolated system. A metastable state is

locally but not globally minimal with respect to the energy and satisfies some

strong second-order sufficient condition of optimality [43]. Furthermore, the

solution (ya, λ) may be non-unique. If the embedded NLP (1b)–(1d) is con-

vex in ŷa and has a strictly convex objective function for any pydptq, t,pq and

satisfies a constraint qualification, e.g., the linear independence constraint

10



qualification (LICQ, cf. [27, Def. 12.4]), along the solution trajectory, then,

apart from time points where the active set changes, the set of KKT points

contains exactly one element that is the unique globally optimal minimum

point. However, if the NLP is not convex, then the global optimal objective

function value is still unique but there might be more than one minimum

point, i.e., for given pydptq, t,pq the solution set of the embedded NLP might

contain more than one element. The same situation may arise if the embed-

ded NLP is convex but has not strictly convex objective function. While this

case is of a rather theoretical nature for NLPs, embedded linear programs

are a typical example for this scenario. In both cases, yaptq has to be chosen

according to a heuristic selection strategy. For example, Höffner et al. [19]

consider differential equations with linear programs embedded and propose to

use lexicographic optimization, i.e., they formulate additional LPs to choose

from the optimal solution set of the original LP.

The KKT embedding approach relates DAEOs directly to nonsmooth

systems, since several constraints can be active and the activity of any con-

straint can change at any time. To this end, as we will show later, it suffices

to consider only the slightly restricted class of nonsmooth systems of index-1

11



semi-explicit differential-algebraic equations of type

9xkptq “ fkpxkptq,ykptq,pq, t P rtk´1, tks, k “ 1, 2, . . . , K, (6a)

0 “ gkpxkptq,ykptq,pq, t P rtk´1, tks, k “ 1, 2, . . . , K, (6b)

x1pt0q “ ψ0ppq, (6c)

xk`1ptkq “ ψkpxkptq,ykptq,pq, k “ 1, 2, . . . , K ´ 1, (6d)

0 “ σkpxkptq,ykptq,pq, k “ 1, 2, . . . , K ´ 1. (6e)

The notation is borrowed from [16]. Let us consider the nonsmooth system

(6) in detail. The initial time is t0, the final time is tK and the implicitly

computed switching times t1, . . . , tK´1 divide the total time horizon rt0, tKs

into the intervals rt0, t1s, rt1, t2s, . . . , rtK´1, tKs, also called stage 1, stage 2,

. . . , stage K, respectively. We allow the structure and the characteristics

of the individual stages to implicitly depend on p. Especially the number

of stages K may depend implicitly on the parameters p. The differential

and algebraic states are denoted xk and yk and differential and algebraic

equations are given by Eqs. (6a) and (6b). Equations (6c) and (6d) provide

initial conditions for the differential states at the beginning of each stage. The

switching time points are computed as zero crossings of the switching function

σk given in Eq. (6e). When such a time point tk is detected, the system

switches to the subsequent stage k ` 1 that may comprise different states,

equations and switching functions. In the context of DAEOs, a change of the

active set of the embedded optimization problem will trigger such a switching

event (a general introduction will be given shortly; Equations (11) and (12)

illustrate the switching functions for the small nonlinear example (2)).
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If in the DAEO (1), the embedded NLP is substituted by its associated

KKT conditions, we yield the nonsmooth system (5). We will show that

this system can be formulated in terms of the notation of Eq. (6). Assume,

we have K ´ 1 changes in the active sets, corresponding to the times t1 ă

. . . , tK´1. Then the set Iapyd,ya, t,pq is constant with respect to t, say

Iapyd,ya, t,pq ” Ika on the open intervals ptk´1, tkq for k “ 1, . . . , K. In

particular, we have K stages, and with the notation of system (6), we have

xkptq ” ydptq, ykptqT ” zT “ pyaptqT ,λptqT q and fk “ f , k “ 1, . . . , K.

Now let us fix k P t1, . . . , K ´ 1u. Then at t “ tk an inequality constraint,

say glp¨q ě 0 for some l P tne ` 1, . . . , ngu, either changes from inactive to

active or vice versa. In the first case we have the identity σkpyd, z, t,pq ”

glpyd,ya, t,pq while in the second case we have σkpyd, z, t,pq ” λl. We may

identify the algebraic equations in stage k by

gkpyd, z, t,pq ”

¨

˚

˚

˚

˝

pgjpyd,ya, t,pqqjPIka

pλjqjRIka

∇ya
Lpyd,ya,λ, t,pq

˛

‹

‹

‹

‚

, t P ptk´1, tkq. (7)

Further, we have ψ0 ” yd,0 and for k “ 1, . . . , K ´ 1, ψk is the identity

function, since the differential variables are continuous in DAEO systems. In

conclusion, we have reformulated the DAEO (1) to the class on nonsmooth

systems given by Eq. (6).

Let us now reformulate the simple example DAEO (2) into a nonsmooth

DAE system of form (6). The Lagrangian of the embedded NLP (2b)–(2d)
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is given by

Lpyd, ya, λ1, λ2,pq “ p´ydptq`2 yaptq`p3q2´λ1ptq¨yaptq´λ2ptq¨pp2 ´ yaptqq .

Then, evaluating the Karush-Kuhn-Tucker conditions for each t P r0, 1s,

yields the algebraic equation system with complementarity constraints

0 “ Lypt, ydptq, yaptq,pq “ 4 ¨ p´ydptq ` 2yaptq ` p3q ´ λ1ptq ` λ2ptq, (8)

0 “

$

&

%

yaptq if yaptq ď 0 and λ1ptq ě 0

λ1ptq else
, (9)

0 “

$

&

%

p2 ´ yaptq if p2 ´ yaptq ď 0 and λ2ptq ě 0

λ2ptq else
. (10)

The associated switching functions σ1 and σ2 are defined by

σ1pyaptq, λ1ptqq “

$

&

%

λ1ptq if yaptq ď 0 and λ1ptq ě 0

yaptq else
, (11)

σ2pyaptq, λ2ptq, p2q “

$

&

%

λ2ptq if p2 ´ yaptq ď 0 and λ2ptq ě 0

p2 ´ yaptq else
. (12)

Together with the differential equation (2a), the algebraic equations (8)–(10)

and switching functions (11) and (12) constitute a well-determined nons-

mooth system in the variables yd, ya, λ1, λ2. At switching times t˚, the dif-

ferential state is continuous ydpt˚
`q “ ydpt˚

´q.

Direct implementation of the nonsmooth DAE formulation is possible in

most modeling languages (see Table A.3 for a Modelica representation of
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Table 1: Manual direct implementation of nonsmooth DAE formulation of illustrative
DAEO example (2) in Modelica

model Smal lNonl inearExample nDAE
import Mode l i c a . C o n s t a n t s . p i ;
constant I n t e g e r m=0 ”Number o f DAEO e q u a l i t i e s ” ;
constant I n t e g e r q=2 ”Number o f DAEO i n e q u a l i t i e s ” ;
parameter Rea l p1=1;
parameter Rea l p2=3;
parameter Rea l p3=1;
Rea l y d ( s t a r t =4, f i x e d=true ) ” D i f f e r e n t i a l v a r i a b l e ” ;
Rea l y a ( s t a r t =1) ” A l g e b r a i c v a r i a b l e ” ;
Rea l s igma [ q ] ”DAEO sw i t c h i n g f u n c t i o n v a l u e s ” ;
Rea l lambda [ q ] ” Lag rang i an m u l t i p l i e r ” ;
Rea l g i n eq [ q ] ” I n e q u a l i t i e s o f embedded NLP” ;
Boolean i s a c t i v e i n e q [ q ] ( s t a r t={ f a l s e , f a l s e } ) ;

equation

de r ( y d ) = 8∗ p i ∗ cos ( t ime ∗(2∗ p i ) ) ;
g i n eq [ 1 ] = y a ;
g i n eq [ 2 ] = p2 ´ y a ;
4∗(´ y d + 2∗ y a + p3 ) ´ lambda [ 1 ] + lambda [ 2 ] = 0 ;
f o r i i n 1 : q loop

i f ( p re ( i s a c t i v e i n e q [ i ] ) ) then

g ineq [ i ] = 0 ;
s igma [ i ] = lambda [ i ] ;

e l s e

lambda [ i ] = 0 ;
s igma [ i ] = g ineq [ i ] ;

end i f ;
end fo r ;
when (min ( s igma ) < 0) then

i s a c t i v e i n e q = So l v e r . c h a n g eA c t i v e S e t (
sigma ,
p re ( i s a c t i v e i n e q ) ) ;

end when ;
end Smal lNonl inearExample nDAE ;
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example (2)). However, this approach has some disadvantages. First, the

user needs to put much work into the manual implementation which may

work for smaller problems but get tedious and error-prone for larger cases.

In addition, the correct solution of the system depends on the robustness

of the simulation tool. In particular, there may be multiple KKT points

satisfying the algebraic equations and the solution may jump between them

during simulation. Another important aspect is the calculation of the correct

initial active set. Note that it was specified for the small illustrative example.

While this might be possible for small problems, it becomes intractable as

the size of the embedded NLP increases. An additional difficulty arises for

embedded linear programs in case of degenerated solutions (i.e., the strict

complementarity condition does not hold and consequently λi “ 0 for some

index i P Ia [27]). In that case, the algebraic equation systems become

singular and no unique solution can be computed.

To overcome these drawbacks, we use an external toolbox to solve the

KKT-based algebraic system. In the next section, we describe how we use

homotopy continuation in the external toolbox to avoid jumps between dif-

ferent KKT points. To determine the (initial) active set Ia, the embedded

(non)linear program is directly optimized. In Section 3, the solution tech-

nique is specialized for the interesting class of DFBA models (i.e., embed-

ded optimization problems that are linearly constrained with linear objective

function).

2.4. Tracking solution points of embedded NLPs by homotopy continuation

By substituting the embedded NLP (1b)–(1d) by its KKT conditions for

a fixed active set, we get an algebraic equation system. To ensure that the
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local solution points of the embedded NLP (1b)–(1d) do not jump between

to consecutive time steps, we track them by numerical continuation. An

excellent introduction to numerical continuation methods is [1]. For a fixed

active set Ia, the unknowns are denoted z. For a fixed time s1 P ptk´1, tkq,

we have to solve nonlinear system (7) which has the form

0 “ F pz, qq :“ gkpydptq, z, t,pq, where pydptq, t,pq “: q P R
nq (13)

with F : Rnz ˆ R
nq Ñ R

nz , which can be assumed to be sufficiently smooth

for our purposes. By varying q in Eq. (13) we see that F pz, tq “ 0 defines

a solution manifold that might have more than one connected components.

We have to ensure that during numerical integration we stay on the same

connected component as the time t progresses.

Let the DAE integrator take a step of size h from t “ s1 to s2 “ s1 ` h.

We can assume that the active set does not change. For the purpose of il-

lustration we consider a simple DAEO with one differential variable x and

one algebraic variable y (that is computed as the solution of an embedded

nonlinear program). An implicit Euler scheme that always converges af-

ter two Newton-type iterations will serve as the numerical integrator. We

assume that we already computed accurate approximation of x
p2q
1 « xps1q

and y
p2q
1 « yps1q at t “ s1. The upper subscript in parentheses denotes

the iteration index of the Newton-type iterations (remember that we always

take two iterations to converge). After the first Newton-type iteration, that

implicit Euler scheme computes a not very accurate approximation x
p1q
2 of

xps2q. The corresponding algebraic variable y
p1q
2 could be computed by any

nonlinear equation solver. However, an arbitrary nonlinear equation solver
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cannot ensure that we stay on the same connected component of the solution

manifold. Therefore, we will use homotopy continuation which will ensure

that we do stay on the same connected component. Let us now discuss this

first Newton-iteration in detail.

With the notation of Eq. (13) we have z1 “ y
p2q
1 and q1 “ x

p2q
1 which

satisfy the equation F pz1, q1q “ 0. After the first Newton-iteration we have

q2 “ x
p1q
2 and have to compute z2 “ y

p1q
2 by solving F pz, q1q “ 0 for z. To

stay on the same connected component of the solution manifold we employ

the homotopy continuation approach

F pzpλq, p1 ´ λqq1 ` λ q2q “ 0, λ P r0, 1s. (14)

We start with λ “ 0 and use a homotopy continuation solver that will take

some intermediate steps in λ to solve Eq. (14) until λ “ 1. This way we ensure

that we stay on the same connected component of the solution manifold. The

situation is sketched in Figure 1. To compute y
p2q
2 (corresponding to x

p2q
2 ) we

proceed analogously.

Our homotopy continuation solver is based on “Program 1. A Simple PC

Continuation method” of the book of Allgower and Georg [1]. The original

code was written in Fortran 77, but we provide a reimplementation using

modern C++ programming techniques. The jacobian of F in (14) is com-

puted by the algorithmic differentiation library dco/c++ [22]. The number

and locations of the intermediate points are computed adaptively using a

steplength control algorithm. For details we refer to [1, page 266ff.]. The

source code of the continuation solver is also published in the project repos-

itory.
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sufficient condition (SOSC, cf. [27, Theorem 12.6]) is fulfilled for the embed-

ded optimization problem [48]. For the KKT conditions of linear-constrained

problems (LP and QP embedded), LICQ can be replaced by the condition

of linear constraints [27].

Stechlinski et al. [42] extend the theory on solvability to nonsmooth DAEs

using projections of the generalized Clarke Jacobian. Another approach for

solving nonsmooth DAEs is regularization in order to obtain a smooth DAE.

When applying the KKT-based reformulation of the original DAEO sys-

tem, the nonsmoothness results from the complementarity condition (i.e.,

λk ¨ gk “ 0, k “ 1, . . . , ng). Caspari et al. [6] apply regularization to these

nonsmooth complementarity constraints to obtain a smooth DAE system and

show that the conditions for well-posedness of the original nonsmooth DAE

are sufficient of well-posedness of the regularized DAE.

2.6. Solving DAEOs in Modelica

In order to solve this problem class in Modelica-based simulation software,

we implemented an external DAEO toolbox that is interfaced to Modelica

via the ExternalObject class and thereby allows formulation of DAEO (1) in

Modelica language. The constructor function of the ExternalObject parses a

textual representation of the embedded optimization problem and constructs

an optimization model for the respective solver. Two different approaches

are available to solve the embedded optimization problem depending on the

chosen solution strategy. The direct approach returns the solution ya as a

function of the time-varying input variables by directly solving the embedded

optimization problem. The KKT embedding approach additionally returns

the values of switching function σ. In the first step of this approach, the
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toolbox uses an optimizer to solve the embedded problem in order to de-

termine the active set. Subsequently, the KKT conditions (4a) - (4b) are

derived and solved during dynamic simulation. An active set change is in-

dicated by zero-crossing of the switching function σ. Returning the values

to the integrator allows efficient tracking of these active set changes by its

event detection algorithm. At such an event, a new active set is calculated

and simulation continues:

when min ( s igma ) < ´ev tTo l then

upda t eAc t i v eSe t ( daeo , daeo In ) ;

end when ;

We use a small positive value for evtTol instead of zero to ensure that the

optimizer finds a novel active set. This idea is borrowed from the principle

of the discontinuity tolerance in [? ]. The value of evtTol is set to 2 ˆ 10´9

unless noted otherwise.

3. Specialized solution method for DFBA models with linear ob-

jective

In the context of DFBA models, the constraints of the embedded op-

timization problem (1c) and (1d) are linear and only a small part of the

formulation is time-dependent. In this section, we specialize the KKT em-

bedding solution technique for this modeling class to enable fast and reliable

simulation. In particular, we propose a regularization to avoid non-unique

solutions and exploit the structure of the model formulation. In case of a

linear objective function (i.e., h “ cT ŷa with objective gradient c), the em-

bedded optimization problem of DFBA models comprises a linear program
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and any solution vector (ya, λ) satisfying the KKT conditions is a global

minimizer. However, the solution vector is generally non-unique and a se-

lection strategy for choosing one solution is required. As mentioned before,

Höffner et al. [19] use a lexicographic optimization approach. They formulate

additional objective functions in a priority list. After solving the first LP, the

optimal solution value is added as constraint and the next LP is solved. The

differential equations in (1) usually depend on a small subset of the solution

vector ya, namely the exchange fluxes. By selecting each exchange flux as

objective function in their priority list, they obtain unique exchange fluxes.

The choice of order changes the model behavior and is thus an important

modeling assumption. As a possible drawback, the lexicographic optimiza-

tion approach required solving multiple LPs which may be time-consuming.

Following a different idea, Scott et al. [19] reformulate the linear program

using a logarithmic barrier function to avoid inequality constraints in their

formulation. Thereby, they circumvent the non-uniqueness as they obtain

a unique solution that is on the interior of the feasible set of the original

problem. In this work, we add a quadratic regularization term to the ob-

jective function transforming the LP into a quadratic program (QP). The

objective function becomes h “ cT ŷa ` 1
2
ŷT
aGŷa. We use a diagonal matrix

G with Gii “ ǫ @ i P R
na where ǫ ą 0 is a small, positive value. With this

choice, G is positive definite and the embedded LP is transformed into a

strictly convex QP with a unique global solution [27]. After the KKT-based

reformulation, the regularization yields continuity of the algebraic variables

yaptq of the nonsmooth DAE system over time [30, Chapter 1, Theorem 2].

The unique solution vector is obtained by solving a single QP compared to
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a potentially high number of LPs that need to be solved sequentially in the

lexicographic approach. For a sufficiently small ǫ, the optimal solution of the

QP is also a the solution of the original LP [24].

From the set of possible solutions of the LP in the context of DFBA,

the reformulated QP selects the solution with minimal overall intracellular

flux which is also a popular choice for the objective function [39]. While

the method described in section 2.3 also applies for QPs, we exploit the

linearity of the constraints using a slightly different solution technique for

the DFBA examples to improve computational performance. The embedded

optimization problem of the DFBA approach can be written as

min
ŷaPRna

cT ŷa `
1

2
ŷT
a Gŷa (15a)

s.t. 0 “ Aŷa ´ bpydptq, ŷa, t,pq, (15b)

0 ď Dŷa ´ d, (15c)

where c P R
na is the objective gradient, G P R

naˆna a positive definite matrix

representing the nonlinear term of the objective function, the linear equality

and inequality constraints are defined by the matrices A P R
neˆna and D P

R
nqˆna and vectors b P R

ne and d P R
nq , where nq “ ng ´ ne is the number

of inequality constraints (15c). Note that the DFBA approach couples the

differential part and the embedded optimization problem exclusively via the

time-varying vector b in (15b) while all other matrices and vectors are time-

invariant. In the following, we denote this time-dependency by bptq.

We split the vector of Lagrange multipliers λ into µ P R
ne and s P R

nq

referring to the equality constraints (15b) and inequality constraints (15c),
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respectively. The Lagrangian function of (15) is then defined as

Lpya,µ, sq “ cTya `
1

2
yT
aGya ´ µpAya ´ bptqq ´ spDya ´ dq, (16)

and the KKT stationarity conditions is given by

0 “ ∇ya
L “ c`Gya ´ATµ´DTs. (17)

Consequently, the algebraic equations of nonsmooth DAE system (6) in stage

k are given by

gkpyd, pyT
a ,µ

T , sT qT , t,pq “

¨

˚

˚

˚

˚

˚

˚

˝

c`Gya ´ATµ´DTs

Aya ´ bptq

pDj,˚ya ´ djqjPIka

psjqjRIka

˛

‹

‹

‹

‹

‹

‹

‚

, t P ptk´1, tkq,

where Dj,˚ denotes the jth row of the matrix D. The switching function is

defined by

σkpyd, pyT
a ,µ

T , sT qT , t,pq “

¨

˝

pDj,˚ya ´ djqjRIka

psjqjPIka

˛

‚, t P ptk´1, tkq.

The linear equations gkp¨q “ 0 can be written in matrix notation to examine
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the structure of the equation system:

¨

˚

˚

˚

˚

˚

˚

˝

A

DN

G ´AT ´DT

SB

˛

‹

‹

‹

‹

‹

‹

‚

¨

¨

˚

˚

˚

˝

ya

µ

s

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

bptq

dN

´c

0

˛

‹

‹

‹

‹

‹

‹

‚

(18)

with DN ” Dj,˚ @ j P Ia, dN ” dj @ j P Ia and SB ” rIj,˚s
jRIa

, where Ij,˚

is the jth row of identity matrix I P R
nqˆnq . Let us first take a step back

and consider the original DFBA formulation without quadratic term in the

objective function (i.e., G is a zero matrix). In that case, the solution is

on the vertex of the feasible set and the number of equality and active in-

equality constraints equals the number of algebraic variables. Consequently,

two observations can be made. First, ya can be calculated independently of

µ and s. Second, only the former is a function of time while µ and s are

constant for a given active set Ia. The solution of the proposed QP is not

necessarily on the vertices of the feasible region, i.e., there may be less active

inequalities than required for the aforementioned independent calculation of

ya. If that is the case, the entire linear equation system (18) needs to be

solved. Also, the Lagrange multipliers are no longer constant for a given

active set. These observations are exploited within the presented toolbox.

These refinements of the KKT embedding approach lead to improved CPU

time for solving DFBA models and may be applied to other DAEOs with a

similar model structure.
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4. Illustrative examples

The following examples demonstrate the modeling of DAEOs and their

solution using the nonsmooth system approach described in Section 2.3 and

its advantages in terms of required CPU time and the possibility of provide

analytic derivatives (using the implicit function theorem) compared to the

direct approach (cf. Section 2.2). The first example comprises the numerical

results for the small nonlinear DAEO (2). The following two examples are

based on the DFBA approach and discuss the different DAEO formulations

that is an embedded LP and QP, respectively.

The Modelica-based examples are simulated in Dymola 2020 using Vi-

sual Studio 2015 compiler. The implicit integration algorithm DASSL (that

is based on the work of Petzold [29, 4]) is used with a tolerance of 1ˆ 10´12.

The solution method for nonlinear problems uses IPOPT (version 3.12.13)

[46] to calculate the initial active set. The linear examples are also sim-

ulated using the DAE reformulation of DFBAlab with event tolerance of

2ˆ 10´9 and MATLAB solver ode15s for integration. Both implementations

use CPLEX 12.8 for solving the embedded optimization problem with opti-

mality and feasibility tolerance of 1 ˆ 10´9. The resulting trajectories are

compared by means of the root mean squared error (RMSE) defined by

RMSE “

d

řN

i“1pci,DFBAlab ´ ci,DAEOtoolboxq2

N
, (19)

where ci is the concentration of species i corresponding to the differential

states of the system and N is the number of time points. All calculations

are performed on an Intel R© CoreTM i3-4160 with 3.6 GHz and 16 GB RAM
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running Windows 7 64-bit operating system.

4.1. Nonlinear example

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10
Ia“Ø Ia“t2u Ia“Ø Ia“t1u Ia“Ø

Time

yd ya σ1 σ2

Figure 2: Trajectories of nonlinear DAEO example (2). Vertical lines indicate changes of
the active set.

This section shows the simulation results of DAEO (2). The KKT em-

bedding approach is used to solve the nonsmooth DAE reformulation (given

by Eqns. (2a),(8)–(12)). The resulting trajectories are shown in Figure 2.

Note that identical results are obtained for this example by direct Modelica

implementation of the reformulated nonsmooth DAE system (as shown in

Table A.3). The simulation starts with an empty active set Ia “ Ø, i.e.,

gi ą 0 @ i. During the simulation horizon, four active set changes are de-

tected as indicated by the vertical lines. The first one occurs at t « 0.14 when

σ2 becomes 0, i.e., g2 “ 0 becomes active and the switching function changes

from σ´
2 “ g2 to σ`

2 “ λ2. At t « 0.37, the inequality g2 becomes inactive

as indicated by its Lagrange multiplier (remember that σ´
2 “ λ2) becoming

0. The two remaining changes of the active set are caused by inequality g1
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becoming active (at t « 0.63) and inactive again. Possible difficulties with

the nonsmooth system approach are an eventual degeneracy of the embedded

NLP and zero-touching of the switching functions which have to be checked.

4.2. DFBA example 1: Corynebacterium glutamicum

The first DFBA example is based on the metabolic network model of

Corynebacterium glutamicum [31]. It comprises a focused model of the cen-

tral carbon metabolism of C. glutamicum with four different pathways for

potential d-xylose utilization. Differential variables are the extracellular con-

centration of biomass (X), d-glucose (GLC), d-xylose (XYL) and potential

(by-)products succinate (SUC), lactate (LAC) and acetate (AC). In total,

the model consists of 50 intracellular metabolites, 59 metabolic and 6 ex-

change fluxes. The uptake rates for carbon sources d-glucose and d-xylose

are modeled via Michaelis-Menten kinetics with an upper limit for the overall

uptake rate to account for transport limitations. To model aerobic growth

conditions, the oxygen uptake rate is not computed by an algebraic equation

but as the solution of the embedded optimization problem within fixed upper

and lower bounds. Maximization of biomass growth is chosen as optimization

criterion. Initial conditions are 0.1 g L´1 of biomass, 25 g L´1 of d-glucose

and 5 g L´1 of d-xylose.

The resulting concentration profiles and important exchange fluxes are

shown in Figure 3. Under the chosen conditions, only biomass growth with-

out any (by-)product formation is observed. The concentration profiles ob-

tained by using DFBAlab and the DAEO toolbox are nearly identical with

small RMSE values of 1.42 ˆ 10´4, 9.27 ˆ 10´4 and 3.76 ˆ 10´4 for biomass,

d-glucose and d-xylose concentration, respectively. Even the switching time
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Figure 3: Aerobic growth of C. glutamicum: concentration profiles of extracellular species
(top); exchange fluxes corresponding to species in the bioreactor (bottom). Magnification
shows two intracellular fluxes whose constraints are activated/deactivated at the respective
active set change. Vertical lines indicate changes of the active set. The RMSE (compared
to DFBAlab) for biomass, d-glucose and d-xylose concentration are 1.42ˆ10´4, 9.27ˆ10´4

and 3.76 ˆ 10´4, respectively.

points tk are very similar with an RMSE value of 1.6ˆ10´3. Small deviations

are probably caused by use of different integration algorithms (DASSL vs.

ode15s). For the chosen aerobic conditions (no constraint on oxygen uptake

rate) unique extracellular fluxes are obtained. Consequently, identical tra-

jectories with identical switching time points are obtained using DFBAlab,
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LP embedded and QP embedded approach.

4.3. DFBA example 2: Escherichia coli

In the third example, we consider the metabolic network model iJR904 of

Escherichia coli K-12 [34]. It consists of 625 unique metabolites, 931 intracel-

lular and 144 exchange fluxes. The dynamic case study is based on the study

by Hanly et al. [15] that has been used by various authors to demonstrate

their algorithms [19, 12, 40]. The differential variables are the concentrations

of biomass, d-glucose, d-xylose and ethanol. Uptake rates are again mod-

eled via Michaelis-Menten kinetics [15, Eqs. (3)-(5)] with parameters from

literature [15, Tab. 1]. The uptake kinetics for carbon sources d-glucose and

d-xylose contain an inhibition term reflecting growth rate suppression at high

ethanol concentrations. The d-xylose uptake rate additionally comprises a

second inhibition term with respect to high d-glucose concentrations [15].

The oxygen concentration is kept constant at 0.24 mmol L´1. Initial concen-

trations are 0.03 g L´1 biomass, 15.5 g L´1
d-glucose and 8 g L´1

d-xylose.

Simulation is terminated when carbon sources are depleted. The example is

solved using the presented DAEO toolbox, both with a linear and a quadratic

objective function. For both cases, maximization of biomass growth is chosen

for the linear part of the objective function. The approach with an embed-

ded QP additionally comprises a diagonal regularization matrix as described

above. The simulation results of both approaches are compared to DFBAlab

serving as benchmark.

The trajectories of the differential states are shown in Figure 4. The

concentration profiles show biomass growth on the primary carbon source

d-glucose until its depletion at t « 7 h. At that time point, a larger number
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Figure 4: Aerobic growth of E. coli : concentration profiles of extracellular species (top)
and magnification of two time intervals with large number of active set changes (bottom).

of successive active set changes occurs indicating a switch to growth on d-

xylose. After approximately 8.1 h, both carbon sources are depleted and

simulation is stopped. In this example, the concentration curves are again

in good agreement. All approaches detect active set changes at similar time

points. The approaches may identify different active sets. Consequently,

a different number of active set changes is detected during simulation (cf.

Fig. 4, bottom).
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Table 2: Comparison of CPU time for the presented exam-
ples using different approaches for solving DAEO (1).

Mean CPU time (s)a

Direct KKT embedding

Nonlinear example b - 0.26

C. glutamicum, LP 0.23 0.02 (0.02)c

C. glutamicum, QP 1.36 0.04 (0.03)c

E. coli, LPd 2.5 0.31 (0.31)c

E. coli, QPd 8.2 1.13 (1.07)c

a The mean CPU time refers the average integration
time from 10 simulations.

b For the nonlinear example, an event tolerance of
1 ˆ 10´6 was used.

c The CPU time in brackets is obtained using analytical
derivatives.

d For the simulations of the E. coli example, an event
tolerance of 1 ˆ 10´8 was used.

4.4. Discussion

Table 2 summarizes the CPU times for solving the examples presented

above using the different approaches. For all examples, the direct approach

successfully solves the DAEO. However, the KKT embedding method re-

quires less CPU time. This result can be explained by different reasons.

First, the KKT-based reformulation yields a nonsmooth DAE system for

which sophisticated solvers exist as opposed to solving the DAEO in the di-

rect approach. In addition, solving an algebraic equation system is generally

faster than solving an optimization problem. On the other hand, the KKT-

based method yields a system with complementarity constraints that are not
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naturally handled by the DAE solver. Returning the values of the switch-

ing function to the integrator allows the integration algorithm to explicitly

detect changes of the active set (e.g., when an inactive inequality becomes

active or vice versa).

For both DFBA examples, the computation time is shorter for the LP

embedded approach compared to QP embedded, independent of the chosen

solution method (i.e., for both direct and KKT embedding approach). The

difference in the computational time is mainly caused by the higher effort

required to solve a QP compared to LP.

An additional advantage of the KKT embedding approach is the possi-

bility of providing analytical derivatives of the algebraic reformulation of the

embedded optimization problem. The computational times using analytical

derivatives are slightly lower compared to numerical derivatives. Overall, it

is the fastest approach for the examples shown.

5. Conclusion and outlook

This work presents and compares different solution methods for differential-

algebraic equation systems with embedded optimization criterion. The im-

plemented DAEO toolbox allows model formulation in the modeling lan-

guage Modelica. The direct solution method directly optimizes the embed-

ded (non)linear program in each step and successfully solves the considered

examples. The KKT embedding approach reformulates the DAEO into a

nonsmooth DAE by using first-order optimality conditions. The nonsmooth-

ness arises if an inequality constraint changes from inactive to active or vice

versa. The time-points of such active set changes are determined by the
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event detection algorithm as zero-crossings of a suitable switching function.

This way, the integrator can handle the nonsmoothness in an effective man-

ner leading to faster simulation times compared to the direct approach. In

addition, providing analytical derivatives leads to a further improvement.

The presented solution methods enable simple expansion of DAEOmodels

into large-scale applications (e.g., dynamic modeling of a bioreactor in a

plant-wide biorefinery, see [31]). In a further application, the implementation

of the KKT embedding method with its analytical derivatives allows for

dynamic optimization of DAEOs. The presented solution approach uses local

optimization software to determine the initial active set and is further based

on local optimality conditions. While this is adequate for LPs and convex

QPs, it may lead to undesired local solutions for nonconvex NLPs. In that

case, the global solution of the DAEO needs to be adressed in future research.
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Availability and requirements

License: The Modelica models and the code of the presented DAEO tool-

box are available under the terms of the GNU General Public License version

3.0 as published by the Free Software Foundation at https://www.gnu.org/

licenses/gpl-3.0.html.

Link to repository: http://permalink.avt.rwth-aachen.de/?id=252659

Operating system(s): In principle any operating system that supports a

Modelica-based simulation environment and CPLEX. We successfully tested

with Dymola 2018 and 2020 64-bit on Windows and Linux and with Open-

Modelica 1.14.1 on MacOS and Linux. Using OpenModelica on Windows

does not work due to incompatability of the OpenModelica C++ compiler

with CPLEX.

Programming language: The models are written in Modelica. If the user

wants to extend the DAEO toolbox, C++ is required.

Other requirements: CPLEX for embedded linear and quadratic programs

(tested with version 12.8)
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Foundation (DFG) under grant MI 1851/3-1.

Appendix A. Modelica code of nonlinear DAEO example
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Table A.3: Implementation of illustrative DAEO example (2) in Modelica

model Smal lNonl inearExample DAEO
import Mode l i c a . C o n s t a n t s . p i ;
parameter Rea l p1=1, p2=3, p3=1;
constant I n t e g e r n=2 ”number o f DAEO v a r i a b l e s ” ;
constant I n t e g e r p=3 ”number o f DAEO i n p u t s ” ;
constant I n t e g e r m=1 ”number o f DAEO e q u a l i t i e s ” ;
constant I n t e g e r q=2 ”number o f DAEO i n e q u a l i t i e s ” ;
constant S t r i n g params [ p]={”x” , ”p2” , ”p3”} ”DAEO i n p u t s ” ;
Rea l daeo In [ p ] ”DAEO inpu t v a l u e s ” ;
constant S t r i n g v a r i a b l e s [ n]={”y” , ” z”} ”DAEO v a r i a b l e s ” ;
constant S t r i n g o b j e c t i v e=”(´x + 2 ∗ y + p3 )ˆ2 ”
”DAEO o b j e c t i v e f u n c t i o n ( to be min imized ) ” ;
constant S t r i n g e q u a l i t i e s [m]={”y ´ z”}
”DAEO e q u a l i t y c o n s t r a i n t s ” ;
constant S t r i n g i n e q u a l i t i e s [ q]={”y” , ”p2´y”}
”DAEO i n e q u a l i t y c o n s t r a i n t s ” ;
parameter So l v e r .Non l i n e a rDaeoOb j e c t daeo=

So l v e r .Non l i n e a rDaeoOb j e c t ( params ,
v a r i a b l e s ,
o b j e c t i v e ,
e q u a l i t i e s ,
i n e q u a l i t i e s ) ” Non l i n e a r e x t e r n a l DAEO ob j e c t ” ;

parameter Rea l t o l E v e n t=1e´6;
Rea l y d ( s t a r t =4, f i x e d=true ) ” D i f f e r e n t i a l v a r i a b l e ” ;
Rea l y a ( s t a r t =1) ” A l g e b r a i c v a r i a b l e ” ;
Rea l s igma [ q ] ”DAEO sw i t c h i n g f u n c t i o n v a l u e s ” ;
Rea l daeoOut [ n ] ”DAEO s o l u t i o n v e c t o r ” ;
I n t e g e r i n f o [ 2 ] ;
I n t e g e r even tCounte r ( s t a r t =0, f i x e d=true ) ;

equation

de r ( y d ) = 8∗ p i ∗ cos ( t ime ∗(2∗ p i ) ) ;
daeo In [ 1 ] = y d ;
daeo In [ 2 ] = p2 ;
daeo In [ 3 ] = p3 ;
( daeoOut , sigma , i n f o ) = S o l v e r . s o l v eN o n l i n e a r A c t i v e S e t (

daeo ,
daeoIn ,
n ,
q ) ;

when min ( s igma ) < ´t o l E v e n t then

So l v e r . u p d a t eNon l i n e a rA c t i v e S e t ( daeo , daeo In ) ;
even tCounte r = pre ( even tCounte r ) + 1 ;

end when ;
y a = daeoOut [ 1 ] ;

end Smal lNonl inearExample DAEO ;
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[17] Harwood, S.M., Höffner, K., Barton, P.I., 2016. Efficient solution of

ordinary differential equations with a parametric lexicographic linear

program embedded. Numerische Mathematik 133, 623–653. 10.1007/

s00211-015-0760-3.

[18] Hjersted, J.L., Henson, M.A., 2006. Optimization of fed-batch Sac-

charomyces cerevisiae fermentation using dynamic flux balance models.

Biotechnology progress 22, 1239–1248. 10.1021/bp060059v.
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